Solvent Isotope Effects on Alkane Formation by Cyanobacterial Aldehyde Deformylating Oxygenase and Their Mechanistic Implications
نویسندگان
چکیده
The reaction catalyzed by cyanobacterial aldehyde deformylating oxygenase is of interest both because of its potential application to the production of biofuels and because of the highly unusual nature of the deformylation reaction it catalyzes. Whereas the proton in the product alkane derives ultimately from the solvent, the identity of the proton donor in the active site remains unclear. To investigate the proton transfer step, solvent isotope effect (SIE) studies were undertaken. The rate of alkane formation was found to be maximal at pH 6.8 and to be the same in D2O or H2O within experimental error, implying that proton transfer is not a kinetically significant step. However, when the ratio of protium to deuterium in the product alkane was measured as a function of the mole fraction of D2O, a (D2O)SIEobs of 2.19 ± 0.02 was observed. The SIE was invariant with the mole fraction of D2O, indicating the involvement of a single protic site in the reaction. We interpret this SIE as most likely arising from a reactant state equilibrium isotope effect on a proton donor with an inverse fractionation factor, for which Φ = 0.45. These observations are consistent with an iron-bound water molecule being the proton donor to the alkane in the reaction.
منابع مشابه
Role of Cysteine Residues in the Structure, Stability, and Alkane Producing Activity of Cyanobacterial Aldehyde Deformylating Oxygenase
Aldehyde deformylating oxygenase (AD) is a key enzyme for alkane biosynthesis in cyanobacteria, and it can be used as a catalyst for alkane production in vitro and in vivo. However, three free Cys residues in AD may impair its catalytic activity by undesired disulfide bond formation and oxidation. To develop Cys-deficient mutants of AD, we examined the roles of the Cys residues in the structure...
متن کاملInsights into Substrate and Metal Binding from the Crystal Structure of Cyanobacterial Aldehyde Deformylating Oxygenase with Substrate Bound
The nonheme diiron enzyme cyanobacterial aldehyde deformylating oxygenase, cADO, catalyzes the highly unusual deformylation of aliphatic aldehydes to alkanes and formate. We have determined crystal structures for the enzyme with a long-chain water-soluble aldehyde and medium-chain carboxylic acid bound to the active site. These structures delineate a hydrophobic channel that connects the solven...
متن کاملCyanobacterial aldehyde deformylase oxygenation of aldehydes yields n-1 aldehydes and alcohols in addition to alkanes.
Aldehyde-deformylating oxygenase (ADO) catalyzes O2-dependent release of the terminal carbon of a biological substrate, octadecanal, to yield formate and heptadecane in a reaction that requires external reducing equivalents. We show here that ADO also catalyzes incorporation of an oxygen atom from O2 into the alkane product to yield alcohol and aldehyde products. Oxygenation of the alkane produ...
متن کاملStructure-oriented substrate specificity engineering of aldehyde-deformylating oxygenase towards aldehydes carbon chain length
BACKGROUND Aldehyde-deformylating oxygenase (ADO) is an important enzyme involved in the biosynthetic pathway of fatty alk(a/e)nes in cyanobacteria. However, ADO exhibits quite low chain-length specificity with respect to the substrates ranging from C4 to C18 aldehydes, which is not suitable for producing fuels with different properties or different chain lengths. RESULTS Based on the crystal...
متن کاملComparison of aldehyde-producing activities of cyanobacterial acyl-(acyl carrier protein) reductases
BACKGROUND Biosynthesis of alkanes is an attractive way of producing substitutes for petroleum-based alkanes. Acyl-[acyl carrier protein (ACP)] reductase (AAR) is a key enzyme for alkane biosynthesis in cyanobacteria and catalyzes the reduction of fatty acyl-ACP to fatty aldehydes, which are then converted into alkanes/alkenes by aldehyde-deformylating oxygenase (ADO). The amino acid sequences ...
متن کامل